Skip to main content
Log in

On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper the authors derive regular criteria in Lorentz spaces for Leray-Hopf weak solutions υ of the three-dimensional Navier-Stokes equations based on the formal equivalence relation π ≅ ∣υ2, where π denotes the fluid pressure and υ denotes the fluid velocity. It is called the mixed pressure-velocity problem (the P-V problem for short). It is shown that if \({\pi \over {{{({e^{ - {{\left| x \right|}^2}}} + \left| v \right|)}^\theta }}} \in {L^p}\left( {0,T;{L^{q,\infty }}} \right)\), where 0 ≤ θ ≤ 1 and \({2 \over p} + {3 \over q} = 2 - \theta \), then {itυ} is regular on (0, {itT}]. Note that, if Ω is periodic, \({{e^{ - {{\left| x \right|}^2}}}}\) may be replaced by a positive constant. This result improves a 2018 statement obtained by one of the authors. Furthermore, as an integral part of the contribution, the authors give an overview on the known results on the P-V problem, and also on two main techniques used by many authors to establish sufficient conditions for regularity of the so-called Ladyzhenskaya-Prodi-Serrin (L-P-S for short) type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga, H., Existence and Asymptotic Behaviour for Strong Solutions of the Navier-Stokes Equations in the Whole Space, IMA Preprint Series, 190, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, 1985.

    MATH  Google Scholar 

  2. Beirão da Veiga, H., Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36, 1987, 149–166.

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, H., A new regularity class for the Navier-Stokes equations in Rn, Chin. Ann. Math. Ser. B, 16, 1995, 407–412.

    MATH  Google Scholar 

  4. Beirão da Veiga, H., Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part I, Diff. Int. Eq., 10, 1997, 1149–1156.

    MATH  Google Scholar 

  5. Beirão da Veiga, H., Remarks on the smoothness of the L(0, T; L3) solutions of the 3-D Navier-Stokes equations, Portugaliae Math., 54, 1997, 381–391.

    MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, H., Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part II, Équations aux Dérivées Partielles et Applications, Articles dédiés à J. L. Lions à l’occasion de son 70, anniversaire; Gauthier-Villars, Paris, 1998, 127–138.

    MATH  Google Scholar 

  7. Beirão da Veiga, H., A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2, 2000, 99–106.

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, H., On the truth, and limits, of a full equivalence pυ2 in the regularity theory of the Navier-Stokes equations: A point of view, J. Math. Fluid Mech., 20, 2018, 889–898.

    Article  MathSciNet  Google Scholar 

  9. Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, Berlin, 1976.

    Book  Google Scholar 

  10. Berselli, L. C., Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations, Math. Meth. Appl. Sci., 22, 1999, 1079–1085.

    Article  MathSciNet  Google Scholar 

  11. Berselli, L. C. and Galdi, G. P., Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc., 130, 2002, 3585–3595.

    Article  MathSciNet  Google Scholar 

  12. Berselli, L. C. and Manfrin, R., On a theorem of Sohr for the Navier-Stokes equations, J. Evol. Eq., 4, 2004, 193–211.

    Article  MathSciNet  Google Scholar 

  13. Bjorland, C. and Vasseur, A. F., Weak in space, Log in time improvement of the Ladyženskaja-Prodi-Serrin criteria, J. Math. Fluid Mech., 13, 2011, 259–269.

    Article  MathSciNet  Google Scholar 

  14. Carrillo, J. A. and Ferreira, L. C. F., Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation, Monatsh. Math., 151, 2007, 111–142.

    Article  MathSciNet  Google Scholar 

  15. Escauriaza, L., Seregin, G. and Šverák, V., L3, ∞ solutions to the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58, 2003, 211–250.

    Article  MathSciNet  Google Scholar 

  16. De Giorgi, E., Sulla differenziabilità e l’analicità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 3, 1957, 25–43.

    MathSciNet  MATH  Google Scholar 

  17. Galdi, G. P., An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid-Mechanics, Birkhauser, Basel, 2000, 1–70.

    Chapter  Google Scholar 

  18. Galdi, G. P. and Maremonti, P., Sulla regolarità delle soluzioni deboli al sistema di Navier-Stokes in domini arbitrari, Ann. Univ. Ferrara., 34, 1988, 59–73.

    Google Scholar 

  19. Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq., 61, 1986, 186–212.

    Article  Google Scholar 

  20. Grafakos, L., Classical Fourier Analysis, 2nd ed., Springer-Verlag, Berlin, 2008.

    MATH  Google Scholar 

  21. Ji, X., Wang, Y. and Wei, W., New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations, J. Math. Fluid Mech., 22, 2020, 1–8.

    Article  MathSciNet  Google Scholar 

  22. Kaniel, S., A sufficient condition for smoothness of solutions of Navier-Stokes equations, Israel J. Math., 6, 1969, 354–358.

    Article  MathSciNet  Google Scholar 

  23. Ladyžhenskaya, O. A., Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 5, 1967, 169–185.

    MathSciNet  MATH  Google Scholar 

  24. Ladyžhenskaya, O. A., Ural’ceva, N. N. and Solonnikov, V. A., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI., (translated from Russian), 1968.

    Book  Google Scholar 

  25. Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, Boca Raton, FL, 2002.

    Book  Google Scholar 

  26. Prodi, G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48, 1959, 173–182.

    Article  MathSciNet  Google Scholar 

  27. Rionero, S. and Galdi, G. P., The weight function approach to uniquiness of viscous flows in unbounded domains, Arch. Rat. Mech. Anal., 69, 1979, 37–52.

    Article  Google Scholar 

  28. Seregin, G., On smoothness of L3,∞- solutions to the Navier-Stokes equations up to the boundary, Math. Ann., 332, 2005, 219–238.

    Article  MathSciNet  Google Scholar 

  29. Seregin G. and Šverák, V., Navier-Stokes equations with lower bounds on the pressure, Arch. Rat. Mech. Anal., 163, 2002, 65–86.

    Article  MathSciNet  Google Scholar 

  30. Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems, R. E. Langer (ed.), Univ. Wisconsin Press, Madison, Wisconsin, 1963, 69–98.

  31. Sohr, H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z., 184, 1983, 359–375.

    Article  MathSciNet  Google Scholar 

  32. Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1, 2001, 441–467.

    Article  MathSciNet  Google Scholar 

  33. Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier Grenoble, 15, 1965, 189–258.

    Article  MathSciNet  Google Scholar 

  34. Suzuki, T., Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 14, 2012, 653–660.

    Article  MathSciNet  Google Scholar 

  35. Suzuki, T., A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces, Nonlinear Anal. Theory Methods Appl., 75, 2012, 3849–3853.

    Article  MathSciNet  Google Scholar 

  36. Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. dell’Unione Mat. Ital., 1, 1998, 479–500.

    MathSciNet  MATH  Google Scholar 

  37. Vasseur, A. F., A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA., 14, 2007, 753–785.

    Article  MathSciNet  Google Scholar 

  38. Zhou, Y., Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations, Math. Ann., 328, 2004, 173–192.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Beirão da Veiga or Jiaqi Yang.

Additional information

This work was supported by FCT (Portugal) under the project: UIDB/MAT/04561/2020 and the Fundamental Research Funds for the Central Universities under grant: G2019KY05114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beirão da Veiga, H., Yang, J. On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces. Chin. Ann. Math. Ser. B 42, 1–16 (2021). https://doi.org/10.1007/s11401-021-0242-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-021-0242-0

Keywords

2000 MR Subject Classification

Navigation